Reduced Depth and Visual Hulls of Complex 3D Scenes

نویسندگان

  • Alexander Bogomjakov
  • Craig Gotsman
چکیده

Depth and visual hulls are useful for quick reconstruction and rendering of a 3D object based on a number of reference views. However, for many scenes, especially multi-object, these hulls may contain significant artifacts known as phantom geometry. In depth hulls the phantom geometry appears behind the scene objects in regions occluded from all the reference views. In visual hulls the phantom geometry may also appear in front of the objects because there is not enough information to unambiguously imply the object positions. In this work we identify which parts of the depth and visual hull might constitute phantom geometry. We define the notion of reduced depth hull and reduced visual hull as the parts of the corresponding hull that are phantomfree. We analyze the role of the depth information in identification of the phantom geometry. Based on this, we provide an algorithm for rendering the reduced depth hull at interactive frame-rates and suggest an approach for rendering the reduced visual hull. The rendering algorithms take advantage of modern GPU programming techniques. Our techniques bypass explicit reconstruction of the hulls, rendering the reduced depth or visual hull directly from the reference views.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Planelet Transform: A New Geometrical Wavelet for Compression of Kinect-like Depth Images

With the advent of cheap indoor RGB-D sensors, proper representation of piecewise planar depth images is crucial toward an effective compression method. Although there exist geometrical wavelets for optimal representation of piecewise constant and piecewise linear images (i.e. wedgelets and platelets), an adaptation to piecewise linear fractional functions which correspond to depth variation ov...

متن کامل

Camera Arrangement in Visual 3D Systems using Iso-disparity Model to Enhance Depth Estimation Accuracy

In this paper we address the problem of automatic arrangement of cameras in a 3D system to enhance the performance of depth acquisition procedure. Lacking ground truth or a priori information, a measure of uncertainty is required to assess the quality of reconstruction. The mathematical model of iso-disparity surfaces provides an efficient way to estimate the depth estimation uncertainty which ...

متن کامل

3D Scene and Object Classification Based on Information Complexity of Depth Data

In this paper the problem of 3D scene and object classification from depth data is addressed. In contrast to high-dimensional feature-based representation, the depth data is described in a low dimensional space. In order to remedy the curse of dimensionality problem, the depth data is described by a sparse model over a learned dictionary. Exploiting the algorithmic information theory, a new def...

متن کامل

A Robust Free-viewpoint System Video for Sport Scenes

This contribution describes robust methods to provide a freeviewpoint video visualisation of sport scenes using a multicamera set-up. This allows generation of novel views of actions from any angle and is of interest for visualisation in TV productions. The system utilises 3D reconstruction techniques previously developed for studio use. This paper discusses some experiences found while applyin...

متن کامل

Seamless Integration of Labels into Interactive Virtual 3D Environments Using Parameterized Hulls

This paper presents an approach for the automated, dynamic placement of labels attached to objects of 3D scenes. These labels are seamlessly integrated into the 3D scene by textured polygons aligned to parameterized hulls, which generalize an object’s geometry. This way, the labels follow the principle shape of the annotated objects, emphasize the label-object relationship, reduce ambiguities o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. Graph. Forum

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2008